Deconstructing the chemical potential of the cuprate superconductors

I have been reading through the nice review Finite temperature properties of doped antiferromagnets by Jaklic and Prelovsek from 2000. They summarise their studies of the t-J model by the Finite temperature Lanczos method.
At first sight the graph below of the temperature and doping dependence of the chemical potential does not look particularly interesting [at least to me]. However, they highlight its significance.
Here are a few points.
  • In a simple Fermi liquid the chemical potential has a positive, quadratic and weak temperature dependence. This is only seen for doping c_h=x=0.3
  • For a wide doping range [0.05 < c_h < 0.3] the temperature dependence is approximately linear. The slope changes sign for approximately optimal doping (c_h ~ 0.15).
  • The weak temperature dependence for c_h ~ 0.15 means that optimal doping corresponds to maximum entropy!  [This can be deduced via the Maxwell relation below. Don't you love thermodynamics!]
  • This relation is also related [approximately] to the thermopower via a relationship [equation 8.6], which is essentially a restatement of the Kelvin formula [discussed  by Peterson and Shastry].
  • The latter means the thermopower should change sign around optimal doping, as is indeed observed [more on that later].
  • The large entropy near optimal doping emerges from the interplay of the localised spins [from the remnants of the Mott insulator] and frustration of the antiferromagnetic spin interactions via doping.
I would be interested to see a similar calculation for the Hubbard model on the anisotropic triangular lattice at half filling to see how the chemical potential varies as a function of U/t as the Mott insulator is approached from within the metallic phase.

Comments

  1. So s, T, ch and mu are entropy, temperature, hole concentration and hole chemical potential?

    ReplyDelete
  2. This comment is regarding this post and this post
    http://condensedconcepts.blogspot.com.au/2011/12/optimal-doping-corresponds-to-maximum.html

    You mention the paper by Jaklic-Prelovsek and Eq. 8.6 in particular--I looked at the arxiv version so hopefully they are the same. Eq. 8.6 is not exactly S_Kelvin but is instead just the so-called Mott-Heikes formula. It originates from the Kubo formula where they argue that the transport terms, the current-current and current-heat-current correlation functions are closely related to one another and are nearly \omega independent. They find that this term just looks like \mu(T=0) and they get the Mott-Heikes formula.

    Jaklic-Prelovsek can connect entropy to chemical potential but cannot quite connect entropy to thermopower since their formula for thermopower is must \mu/T. S_Kelvin allows a precise connection from the entropy to the thermopower.

    Anyway, I agree that the Jaklic-Prelovsek paper is filled with interesting things and FTLM appears very powerful.

    ReplyDelete
  3. Hi Michael,
    Thanks for the clarifying comment.
    You are correct. Indeed, Jaklic-Prelovsek do not use Kelvin [contrary to my suggestion] but rather the Mott-Heikes formula for thermopower.
    Cheers

    ReplyDelete
  4. Dear Prof. McKenzie,

    This comment is regarding the post "Deconstructing the chemical potential of the cuprate superconductors".

    You point out that the T^2 dependence of the chemical potential has a positive coefficient in a Fermi liquid. I'm afraid I do not see how this is true in general: My understanding is that the value of the T^2 coefficient (and consequently the sign as well, I imagine) changes with the dependence of the effective quasiparticle mass on the system density; perhaps even dimensionality plays a role.

    Any clarifications will be greatly welcome.

    Thanks a lot.

    ReplyDelete

Post a Comment

Popular posts from this blog

What is Herzberg-Teller coupling?

Is it an Unidentified Superconducting Object (USO)?

What should be the order of authors on a conference poster or talk?